华南新闻网

应注重基础研究的集成和运用

来源:华南新闻网                  发布时间:2019-04-04

   ●基础研究对应用研究起主导和支撑作用,推进军事智能化不仅要关注技术应用研究,更应重视基础研究。

   ●人工智能技术是柄“双刃剑”,既要抓住千载难逢的历史机遇,又要客观理性地看待面临的风险和挑战。既要看到人工智能的“能”,更应看到人工智能还有许多“不能”,科学选择发展路径,理性确定发展目标。

   目前,人工智能技术正加速向军事领域渗透,军事智能化既面临千载难逢的发展机遇,也面临前所未有的挑战。如何加强风险研究和预判,防范重大风险,已经客观而现实地摆在我们面前。当前,尤其应该厘清人工智能发展脉络,把握人工智能发展规律,妥善处理好基础研究与应用研究、人工智能与人类智能、面临机遇与风险挑战的关系,科学选择发展路径,做好安全风险管控,推动军事智能化科学稳步发展。

   把握人工智能发展量变质变规律,处理好基础研究与应用研究的关系

   从1956年美国达特茅斯会议诞生以来,人工智能经历了推理期、知识期、学习期三次高潮和两次低谷,逐渐从“不能用”“不好用”发展到“可以用”的技术拐点,遵循了事物发展从量变到质变的客观规律。现代人工智能之所以发展到目前技术拐点,并不是平地冒出来的,而是多年基础研究的积累和突破。厚积多年,一朝薄发,在严谨的科学领域,所谓的“弯道超车”是不太现实的。推进军事智能化发展,首先就是要深刻把握人工智能发展量变质变规律,妥善处理好基础研究与应用研究之间的关系。

   牢固树立基础研究的战略地位。基础研究对应用研究起主导和支撑作用,推进军事智能化不仅要关注技术应用研究,更应重视基础研究。应把原创性理论研究和突破作为重点,以核心和关键技术为主攻方向,倾力打造多层次人才培养平台,夯实军事智能化发展的基础。美国国防高级研究计划局从20世纪60年代就开始介入人工智能的发展和应用,一直非常重视人工智能基础性研究,培养了一批高端人才,从而奠定了目前美国人工智能领域的领先优势。

   充分挖掘基础研究的集成优势。人工智能是一个多学科、高综合的行业,我们在突出理论创新、技术创新和体制创新的同时,应注重基础研究的集成和运用。“阿尔法狗”2016年横空出世,引起世人震惊,但其基础框架即“蒙特卡洛树搜索”算法及卷积神经网络均成形于20世纪,其引入的强化学习也发展了数十年,通过结构重组和集成,使系统功能出现“涌现”。最近,美国知名人工智能专家安德鲁·穆尔在谈到人工智能发展方向时认为,人工智能的研究或将转向,重点应该致力于现有基础理论成果的运用和转化。

   加强人工智能领域的统筹融合。人工智能是一个通用性强、应用面广的学科,几乎所有商业人工智能项目都能在军事应用上找到发力点。但人工智能是一个高投入、慢产出的行业,没有几年甚至几十年持续投入,难以看到真正的成果。应充分发挥好我国的体制优势,充分发挥好信息产业科技巨头的投资和人才优势,充分发挥我国海量数据和巨大市场应用规模优势,规划主导,科学分工,梯次发展,有序融合,防止一哄而上和重复建设。

   立足人工智能初级阶段的现实,处理好人工智能与人类智能的关系

   现代人工智能之所以取得技术上的突破,主要得益于2006年辛顿提出的深度学习方法。像其他任何算法一样,深度学习也有其不足,主要表现在:适用场景限制多、泛化能力差、数据量要求高等。正是由于深度学习方法的局限性,现代人工智能只是大数据推动的初级智能,属于限制领域人工智能,也称弱人工智能。加快军事智能化发展,应立足“初级智能”这个现实,处理好人工智能和人类智能的关系,准确定位,既要看到人工智能的“能”,更应看到人工智能还有许多“不能”,科学选择发展路径,理性确定发展目标。

   认清现代人工智能在军事指挥控制决策领域应用的技术瓶颈。“阿尔法狗”战胜人类后,再一次激发了人们对人工智能的热情,但军事对抗和棋类对弈最本质的不同是作战行动的不确定性,这些不确定性主要来自信息不完全、情报不一致、度量不准确等,它代表了军事智能化所要面对的真实环境。克劳塞维茨说过,战争是不确定性的王国。对于这些不确定性,不可能用确定性的假设来解决。目前,人工智能系统虽然是基于海量信息或知识的系统,但这些信息或知识仍局限在特定区域范围内,且缺乏对信息或知识的常识应用和融会贯通能力,因而无法解决作战过程中所面临的诸多不确定性问题。一旦问题超出系统约束,系统决策就可能出现失误甚至完全错误,加上战争谋略、欺骗、示假等因素的综合影响,人工智能走进军事指挥控制决策领域仍然面临不少难题。

热文推荐

首页 | 国际 | 国内 | 社会 | 军事 | 科技 | 财经 | 房产 | 汽车 | 娱乐 | 教育 | 体育 | 生活

网站地图 | sitemap

Copyright © 2010-2018 华南新闻网 版权所有